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Abstract

Sequence similarity among distinct genomic regions can lead to errors in
alignment of short reads from next-generation sequencing. While this is well
known, the downstream consequences of misalignment have not been fully
characterized. We assessed the potential for incorrect alignment of
RNA-sequencing reads to cause false positives in both gene expression
quantitative trait locus (eQTL) and co-expression analyses. Trans-eQTLs
identified from human RNA-sequencing studies appeared to be particularly
affected by this phenomenon, even when only uniquely aligned reads are
considered. Over 75% of trans-eQTLs using a standard pipeline occurred
between regions of sequence similarity and therefore could be due to
alignment errors. Further, associations due to mapping errors are likely to
misleadingly replicate between studies. To help address this problem, we
quantified the potential for "cross-mapping" to occur between every pair of
annotated genes in the human genome. Such cross-mapping data can be
used to filter or flag potential false positives in both trans-eQTL and
co-expression analyses. Such filtering substantially alters the detection of
significant associations and can have an impact on the assessment of false
discovery rate, functional enrichment, and replication for RNA-sequencing
association studies.
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;57573 Amendments from Version 1

We updated the manuscript to address several important points
raised by the reviewers. The changes are as follows:

e We added a new section (“Impact of alternative
quantification and parameter settings”) to discuss
the impact of expectation maximization (EM) based
quantification methods, and various parameter choices of
our methods. Two supplementary figures (Supplementary
Figure 10 and Supplementary Figure 11) accompanied
the discussion.

e We included a short description of the gene expression
quantification pipeline of GTEx v7 and DGN.

e We also briefly discussed the gene model to generate k-
mers, and the difference between mappability and cross-
mappability.

e Supplementary Figure 4C was added to show the
composition of different types of pseudogenes in trans-
eQTLs.

e We uploaded several versions of cross-mappability
resources computed with different parameters.

See referee reports

Introduction

Sequence similarity among distinct genomic regions makes
alignment of short sequencing reads difficult'”. Genomes, includ-
ing the human genome, contain diverse classes of elements
with sequence similarity across regions, ranging from large
segmental duplications to pseudogenes to transposable elements.
Alignment-based quantification of genomic phenotypes such
as gene expression or epigenetic signal is less reliable for such
regions’.

Despite attention to the importance of alignment errors, the full
range of consequences is not always considered in downstream
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analyses. Here, we focus on evidence that sequence similarity
between pairs of genes and resulting alignment errors between
them may lead to false positives in association studies from
RNA-sequencing (RNA-seq) data, specifically in expression
quantitative trait locus (eQTL) and co-expression analyses. eQTL
studies, revealing associations between genetic variants and
gene expression levels, have contributed to a greater understand-
ing of gene regulation and genetics of complex traits’~. Trans-
eQTLs, where the genetic variant is distant or on a different
chromosome from the associated gene, are of particular interest,
but have proven challenging to identify in human data due to
power, confounders, small effect sizes, and other challenges'®''.
Given that a trans-eQTL analysis performs genome-wide tests,
it is more prone to be affected by systematic errors between
genomic regions than a cis-eQTL analysis where only variants
close to the target gene are considered. Here, we discuss the impact
of alignment errors on RNA-seq association studies. Figure 1A
illustrates a cartoon example, where all reads truly originate from
transcripts of Gene A, but due to sequence similarity between
Gene A and Gene B, some of the reads incorrectly map to
Gene B, causing it to erroneously appear to be expressed in the
sample. The number of reads misaligned to Gene B across
samples may be directly proportional to the number of reads
for Gene A, or may be determined by genetic variation creat-
ing sequence mismatches with the correct region. In either case,
spurious associations can then arise. In Figure 1A, the two genes
incorrectly appear to be co-expressed. In addition, a variant
associated with expression of Gene A may also appear to be
associated with Gene B, giving rise of a false positive trans-eQTL.
We note that such errors are not entirely mitigated by filtering
multi-mapped reads—some alignment errors may remain
between similar regions even among uniquely aligned reads due
to genetic variation, errors in the reference genome, and other
complications.
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Figure 1. Overview of cross-mappability. A) Some of the reads generated from Gene A are incorrectly mapped to Gene B because
of sequence similarity between the genes, leading to false positive co-expression. Consequently, a variant which is a true cis-eQTL of
Gene A appears as a false positive trans-eQTL of Gene B. B) We align the ambiguous (orange) k-mers (75-mers from exons and
36-mers from UTRs) from Gene A to the reference genome using Bowtie and count how many k-mers from Gene A map to each other
gene to compute cross-mappability. Here, the number beside each ambiguous (orange) k-mer represents the identifier for the ambiguous

k-mer based on its position in Gene A.
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Previous studies have shown that uniqueness of sequence in
genomic regions should be considered in an analysis of sequenc-
ing data*'”. Karimzadeh er al. showed that a differential
methylation analysis can identify false signals due to poor
mappability’. We have previously filtered trans-eQTLs based
on sequence similarity as part of the Genotype-Tissue Expres-
sion (GTEx) project'’ and the Depression Genes and Networks
(DGN) study'. Pickrell er al.'* also suggested that the most
significant distant eQTL in their RNA-seq study was likely an
artifact arising due to sequencing reads originating from a gene
near the SNP mapping to another distant gene. Related effects
were also discussed in greater depth for microarrays, where
probes intended for one gene may cross-hybridize to other
genes'". In microarray studies, one could identify and replace
probes displaying poor specificity, but in RNA-seq, any region
of sequence similarity between genes can cause alignment errors.
Previous studies have not presented a systematic analysis of
alignment-related false positives in RNA-seq association testing.

Here, we report the prevalence of potential false positives in
trans-eQTL and co-expression analyses arising from alignment
errors. We present a method to assess the potential for mapping
error between pairs of genes, which can then be used to filter or
flag associations that could arise from these errors. We introduce a
new metric, “cross-mappability”, representing the extent to which
reads from one gene may be mapped to another gene. Using gene
expression data from GTEx'* and DGN", we demonstrate the
impact of misalignment on both trans-eQTL detection and
co-expression analysis in real data. Notably, we show that over
75% of trans-eQTLs detected in any GTEX tissue using a naive
pipeline are potential false positives, emphasizing that it is
critical to consider these errors. To support future studies, we have
published codes in Github'® and also made cross-mappability
resources publicly available for the human genome (hgl9 and
GRCh38)".

Methods

Mappability and cross-mappability

We developed a new metric, cross-mappability, to quantify the
potential for incorrect read alignment where reads originating
from one gene may incorrectly map to another gene. Based on
annotated transcripts for each gene, we evaluated k-mers from
exonic and untranslated regions (UTRs) of the reference genome
that serve as a proxy for reads in an RNA-seq experiment.
We defined cross-mappability from Gene A to Gene B, crossmap(A,
B), as the number of Gene A’s k-mers whose alignment,
allowing mismatches, start within exonic or untranslated regions
of Gene B. Notably, existing mappability scores* correspond to
a single region (or gene) describing uniqueness of the sequence of
the region in the genome, our cross-mappability score corresponds
to a pair of genes describing similarity between the sequences of
the genes.

Though cross-mappability is a straightforward metric, its compu-
tation is non-trivial due to the size of the genome. We followed a
systematic approach to compute genome-wide cross-mappabilities
in practice. Following Derrien et al.*, we define mappability of a
k-mer as C%, where C, is the number of positions where the k-mer
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maps to the genome with a tolerance of up to 2 mismatches. We
computed exon- and UTR-mappability of a gene as the aver-
age mappability of all k-mers in exonic regions and untranslated
regions, respectively. We used a collapsed gene model to gener-
ate k-mers where overlapped exons and overlapped UTRs were
merged to form exonic and UTR regions, respectively. Then,
mappability of a gene is computed as the weighted average of its
exon- and UTR-mappability, weights being proportional to the
total length of exonic regions and UTRs, respectively. Importantly,
we only have to compute cross-mappability from genes with
mappability < 1, as no k-mer from a gene with mappability = 1
will map to other regions of the genome (i.e. these will all result
in cross-mappability of 0). Moreover, we need to consider only
k-mers with mappability < 1 from a gene, as uniquely mapped
k-mers will not map to other genes. So, we align all such
k-mers from exonic and untranslated regions of each gene to
the reference genome using Bowtie v1.2.2'% tolerating up to
2 mismatches, and then count the number of k-mers whose align-
ment start within exonic or untranslated regions of every other
gene to compute cross-mappability with each gene genome-
wide (Figure 1B).

The length & may be tuned to match particular read length or
alignment method. Here, if the value of k is not mentioned for
k-mers, the default value of k is 75 for exons and 36 for UTRs.
We used a smaller & for UTRs than for exons because UTRs
are generally shorter than exons. Mappability of a gene and
cross-mappability to/from a gene is undetermined if all the
exons of the gene are shorter than 75 bp and all the UTRs are
shorter than 36 bp.

We computed genome-wide mappability and cross-mappability
for human genome hgl9 using annotations from Gencode v19'.
26,200 (out of 57,820) genes had at least one k-mer cross-
mapping to/from another gene. There were 31,167,448 gene
pairs (0.93%) that were cross-mappable (cross-mappability > 0).
Supplementary Figure 1A shows the cross-mappability distri-
bution. We found that 2.45-4.92% of gene pairs expressed and
quantified in five tissues of the GTEx v7 data were cross-
mappable (Supplementary Figure 1B). We also computed the same
set of resources for human genome GRCh38 using annotations
from Gencode v26, all of which are publicly available'.

Data

We downloaded fully processed, filtered and normalized gene
expression data used in GTEx eQTL analysis from the GTEx
portal (www.gtexportal.org). For this study, we focused on gene
expression data from 5 tissues: whole blood, skeletal muscle, thy-
roid, sun-exposed skin, and testis. We also obtained covariates
including 3 genotype PCs representing ancestry, sex, genotyp-
ing platform, and PEER factors” as released in GTEx v7. GTEx
aligned 76-bp paired-end reads to the reference genome with
STAR v2.4.2a’", quantified gene expression levels with RNA-
SeQC v1.1.8* using uniquely mapped reads aligned in proper
pairs and fully contained within exon boundaries where each
alignment must not contain more than six non-reference bases.
We downloaded genotype data from GTEx release v7 from
dbGaP (accession number: phs000424.v7.p2).
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We also collected genotype, processed RNA-seq, and covariate
data for the DGN cohort, which is available through the National
Institute of Mental Health (NIMH) Center for Collaborative
Genomic Studies on Mental Disorders. DGN aligned the reads
to the reference genome using TopHat” and quantified gene
expression levels using HTSeq”. Latent factors inferred from
the expression data have already been regressed out of the proc-
essed DGN data to address hidden confounders, as described
in 13. Gene symbols were mapped to Ensembl gene ids using
Gencode v19.

We downloaded the list of trans-eQTLs in 33 cancer types
detected by PancanQTL> from http://bioinfo.life.hust.edu.cn/
PancanQTL. For consistency with our study, we used trans-eQTLs
where the variant and the gene were on different chromosomes,
and the gene symbols were mapped to unique Ensembl
gene ids according to Gencode v19.

Trans-eQTL detection

For trans-eQTL analysis, we selected autosomal variants with
MAF > 0.05 that did not fall in a repeat region as annotated by
the UCSC RepeatMasker track”®. We tested trans-eQTL association
for each inter-chromosomal variant-gene pair using Matrix-
eQTL’s linear model test”’. For GTEx, three genotype PCs,
genotyping platform, sex, and PEER covariates estimated by
GTEx were used as covariates in Matrix-eQTL. We computed
the false discovery rate using the Benjamini-Hochberg method
within each tissue. The covariates used for trans-eQTL repli-
cation in DGN were three genotype PCs, sex and age, as the
expression data already had latent factors regressed out.

Co-expression analysis

We quantified co-expression of a pair of genes as the absolute
Pearson correlation (|r|) between expression levels of the genes
across all available samples. For GTEx, we regressed out all
covariates including PEER factors before co-expression analysis.
For DGN, we used the corrected data which also regresses
out latent factors.

Results

Effect of cross-mappability on trans-eQTL detection

To investigate the effects of alignment errors on trans-eQTL
detection, we performed a standard trans-eQTL analysis using
data from the GTEx project for five human tissues. For this
study, we categorized an eQTL as “cis” if the variant is within
IMb of the transcription start site (TSS) of the gene, and
“trans” if they are on different chromosomes, approximating the
regions where cis and trans mechanisms are likely to occur. We
call a trans-eQTL “cross-mappable” if any gene within 1Mb of
the identified trans-eQTL variant cross-maps to the trans-eQTL
target gene. The cross-mappable trans-eQTLs represent suspi-
cious hits that could potentially arise simply due to alignment
errors, although cross-mappability does not definitively establish
that any individual trans-eQTL is a false positive.

We identified 19,348 unique trans-eQTLs (variant-gene pairs)
at FDR < 0.05 from five tissues corresponding to 14,785
unique SNPs and 1,419 unique genes. Notably, a large majority
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(75.14%) of these statistically significant trans-eQTLs were
cross-mappable.Furthermore, the cross-mappable eQTLs tended
to be the most highly significant (ordered by increasing p-value,
Figure 2A). In GTEx tissues, 90.8-97.3% of top 1000 trans-
eQTLs were cross-mappable, compared to a background rate of
19.1-25.6% (based on all tested variant-gene pairs). The frac-
tion of cross-mappable trans-eQTLs is very high even when we
restrict our analysis to protein-coding genes or to genes with
mappability = 0.8 (Supplementary Figure 2A-C).

We observed a similar pattern in the trans-eQTLs reported
from RNA-seq data of 33 cancer types” (Supplementary
Figure 2D). We also observed that randomly selected variant-
gene pairs susceptible to cross-mapping yield more trans-eQTLs
than randomly selected pairs with no cross-mapping potential
(Supplementary Figure 3). Overall, the high fraction of cross-
mappable eQTLs among the top associations in multiple tissues
and multiple datasets indicates that alignment errors could be a
major source of artifacts, dominating legitimate trans-eQTLs.
It is also important to note that filtering such prevalent potential
false-positives necessitates re-assessing FDR. For example,
while 4,809 trans-eQTLs with no evidence of cross-mapping
(corresponding to 969 unique genes) were among the 19,348
hits from the original scan of GTEx, only 2,456 (corresponding
to 228 unique genes) would appear significant if FDR were
reassessed after filtering cross-mapping hits.

When we further analyzed the composition of the 19,348
significant naive trans-eQTLs, we observed a majority (>70%)
of cross-mappable eQTLs corresponded to pseudogene targets.
The non-cross-mappable eQTLs contained far fewer pseudogene
targets (30%, Supplementary Figure 4). Likewise, we observed
that more than 85% of eQTLs corresponding to pseudogenes were
cross-mappable. Due to sequence similarity between pseudogenes
and their corresponding parent genes, this is not surprising
and could be due to alignment errors. One simple preventative
measure in trans-eQTL studies would be to simply exclude
pseudogenes entirely. However, 42.4% of eQTLs corresponding
to protein-coding genes were also cross-mappable, which still
exceeded expectation, and the top hits remained enriched for
cross-mapping errors as noted above.

We investigated one GTEx trans-eQTL in greater detail for illus-
tration — variant: chr5:149826526 and gene: RP11-343H5.4
(ENSG00000224114) — which was significant in each of 5 GTEx
tissues. RP11-343H5.4 is a pseudogene on chromosome 1. In the
coverage plots of the gene, we noticed that reads were aligned to
only a fraction of the exonic region of the gene; if the gene were
truly expressed, we would expect reads being mapped across the
whole exon (Figure 2B). RP11-343H5.4 is cross-mappable with
RPS14 (ENSG00000164587), a protein-coding gene in chro-
mosome 5 near the putative trans-eQTL variant. There was also
a cis-association between the variant and RPS14. k-mers from
RPS14 indeed map to the region within RP11-343H5.4, where
we observed a non-zero number of reads. Interestingly, in this
case, read mapping appears to be genotype-dependent - the
variant at chr5:149826526 alters sequence such that it would lead
to reads from RPS14 uniquely, but likely incorrectly, mapping to
RP11-343H5.4.

Page 5 of 28


http://bioinfo.life.hust.edu.cn/PancanQTL
http://bioinfo.life.hust.edu.cn/PancanQTL

>

Q-
7)) —
—
[t
(e}
[}
o X
% o
= Muscle - Skeletal
2 —e— Skin - Sun Exposed
8 g . Testis
g —e— Thyroid
= —e— Whole Blood
D <
g o7
o
S
S o Lo ey T
£ 3
Q
)
o

<

=_

T T T T T
0 5 10 15 20

log,(Number of top trans-eQTLs)

F1000Research 2019, 7:1860 Last updated: 15 JUL 2019

B Genotype at chr5:149826526 : mCC mCT ETT
8.
— < trans p < 1.68e-104
St}
25 °
o <
= 4
S -
=F 2]
chr1:206869182 chr1:206869614
Mapp- 11— —
abiity O
801 cis p < 9.96e-8
S 60 1
23
4 -
c &%
[0
= 201
chr5:149822753 chr5:149829319
— —
— )
- -
Mapp- 1 -
L 1 S ——
ability 0

Figure 2. Effect of cross-mappability on trans-eQTLs in GTEx. A) Fraction of cross-mappable trans-eQTLs among the top significant
variant-gene pairs (ordered by increasing FDR) in each tissue (color). Each dotted horizontal line represents the background cross-mappable
rate in a given tissue. B) An example of likely false positive trans association between the variant chr5:149826526 and the gene RP11-
343H5.4. The coverages (reads per million, RPM) of the trans-eGene RP11-343H5.4 (top) and its cross-mapping gene RPS14 (bottom)
in Thyroid are shown along with their exons and UTRs (black lines below the coverage plot), and mappability of 75-mers. The regions of
mappability less than 1.0 have sequence similar between the two genes.

Finally, we found that cross-mappable eQTLs, which we believe
to be enriched for false-positives, are highly replicable between
datasets. This misleading replication occurs because it is driven
by the underlying sequence of the genome, and similar align-
ment errors frequently occur regardless of tissue and study. We
showed this by measuring the replication between the significant
trans-eQTLs detected at FDR < 0.05 from whole blood from
GTEx and whole blood data from the DGN study'’. To avoid the
effects of linkage disequilibrium, we tested for trans-association
in DGN only for the best variant per GTEx trans-eQTL gene
(with the lowest p-value in GTEx), where both the variant and
the gene were present in the DGN data. At FDR < 0.05, only
10.71% (3 out of 28) non-cross-mappable trans-eQTLs were
replicated in DGN while 31.25% (5 out of 16) cross-mappable
trans-eQTLs were replicated. The Q-Q plot in Figure 3A
shows that cross-mappable trans-eQTLs were more likely
to be replicated compared to non-cross-mappable ones. We
observed the same phenomenon when we attempted to replicate
significant trans-eQTLs detected from one GTEx tissue in other
GTEx tissues. On average, 63.0% (range: 50.3-70.2%) and 16.3%
(range: 7.6-25.1%) of cross-mappable and non-cross-mappable
trans-eQTLs, respectively, were replicated (Figure 3B). This
suggests that replication of a trans-eQTL does not necessarily
indicate a true positive. Overall, we suggest that regardless
of replication, cross-mappable trans-eQTLs require further

investigation to establish that they arise from biological
regulation rather than alignment artifacts.

Effect of cross-mappability in co-expression analysis

Next, we evaluated evidence that alignment errors between genes
can cause spurious correlation between gene expression levels
(co-expression). If alignment errors did not affect co-expression
analysis, we would expect that the distribution of pairwise
correlation between cross-mappable genes would not deviate
from that between non-cross-mappable genes. To test this, we
used the gene expression data in five tissues from GTEx v7 after
correction for covariates and latent confounders (see Methods).
For each tissue, we selected a random set of 10,000 non-cross-
mappable gene pairs and a random set of 10,000 cross-mappable
gene pairs chosen with probability proportional to their cross-
mappabilities (sampling probability proportional to cross-mappa-
bility ensures sampling from the whole cross-mappability range, as
opposed to just from the massive number of low cross-mappability
pairs). Then we computed the absolute Pearson correlation
(|7]) between expression levels of the genes in each randomly
selected pair. We found that expression levels of cross-mappable
genes were more correlated than expression levels of non-cross-
mappable genes (median p across tissues < 4.7 x 107°, Wilcoxon
rank-sum test, Figure 4A). The difference was more signifi-
cant when uncorrected data were used (median p < 1.3 x 1074,
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top co-expressed genes that are cross-mappable and thus potential false positives.
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Supplementary Figure 5). We also observed that the correla-
tion coefficient tends to increase with increasing levels of
cross-mappability between genes (Supplementary Figure 06),
indicating a high rate of false co-expression in the most highly
cross-mappable genes. The increased correlation between cross-
mappable genes was observed even after discounting genes from
same gene family (Supplementary Figure 7), somewhat alleviat-
ing concerns that our observations were due to exclusively true
functional relationships. We observed a similar pattern using
data from an independent RNA-seq study, DGN (Supplementary
Figure 8).

To demonstrate the impact of this pattern on a realistic genome-
wide co-expression analysis, we evaluated how many of the
top-most correlated gene pairs in each GTEX tissue suffer from
cross-mappability. We observed that cross-mappable pairs of
genes are over-represented among the top hits, with gene pairs
ordered by the absolute Pearson correlation after excluding
pairs of genes whose genomic coordinates actually overlap
(Figure 4B, Supplementary Figure 9). Overall, the impact of
cross-mappability on co-expression appears to be less than on
trans-eQTL analysis, but the phenomenon may still require
consideration when examining specific co-expressed gene pairs or
enrichment patterns.

Impact of alternative quantification and parameter settings

We have made several versions of our cross-mappability resources
publicly available for the human genome (hg19 and GRCh38)",
and also published code in Github'®. Researchers should care-
fully choose settings according to the study design and goals.
Genome version and gene annotations can be directly matched,
but other parameter choices such as k and the maximum number
of mismatches allowed in alignment may affect the detec-
tion of false positives. Small values of k will produce more
conservative cross-mappability scores, but large k may not
correctly handle small exons or UTRs. For example, if 75-mers
(instead of 36-mers) were used from UTRs, a smaller propor-
tion of trans-eQTLs (67.2% instead of 75.14%) would appear as
cross-mappable in GTEx, although cross-mappable trans-eQTLs
would still tend to be most highly significant (Supplementary
Figure 10A). Similarly, increasing the number of mismatches
allowed in k-mer alignment results in an increased number of
cross-mappable  trans-eQTLs (Supplementary Figure 10B).
For convenience, k and the number of mismatches are con-
figurable in our software so that, if needed, one can compute
cross-mappability scores with settings appropriate for a given
study.

We also note that utilization of improved alignment and quan-
tification methods to generate gene expression data may also be
helpful to avoid false positives. For example, quantification of
gene expression levels using RSEM”, an expectation maxi-
mization based quantification tool, results in a smaller frac-
tion of false positive trans-eQTLs (60.17%) than that using
RNA-SeQC (75.14%). However, potential false positives due to
cross-mappability still remain abundant in both trans-eQTL and
co-expression studies (Supplementary Figure 11).
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Discussion

Misalignment of short sequencing reads has the potential to
induce false positives in association studies. For RNA-seq, both
trans-eQTL and co-expression analyses are susceptible to these
artifacts, related to false positives in microarray analysis due
to probe cross-hybridization. This is readily apparent from the
enrichment of processed pseudogenes among the top hits for such
association studies, but misalignment can affect protein-
coding genes as well. Our results demonstrate that trans-eQTL
associations in a standard pipeline are dominated by poten-
tial false-positives due to sequence similarity and replication
rates between studies may be artificially inflated due to this
pattern. Additionally, genes with sequence similarity display
more correlated expression levels, and mapping errors should be
considered in co-expression analysis as well.

Our results do not imply that all instances of co-expression or
trans-eQTL associations arising from genes with sequence simi-
larity are in fact false positives. Genes with sequence similarity
also sometimes have true functional relationships. Pseudog-
ene transcripts may interact with coding transcripts, and some
associations with pseudogene expression may reflect true regula-
tory relationships®. Furthermore, the background (random) rate
of sequence similarity between any two regions in the human
genome is above zero; that is, a hit may occur between regions
of sequence similarity by chance, even when no actual mis-
alignment of reads has taken place. However, we believe the
exceedingly high fraction of cross-mappable regions among
trans-eQTLs from a naive analysis warrants suspicion that
these hits are predominantly false positives. Researchers
should consider their particular application and tolerance
for false negatives and false positives when applying filters
targeting alignment errors. Other information, such as base-level
coverage plots and outside functional information can help
disambiguate particular cases of interest.

Extensions, modifications, and other approaches related to this
problem should also be considered. First, specifics of study
design, and in particular sequencing read length, should be taken
into account when using our data to filter potential false posi-
tives. If read length is much shorter or longer than our k-mer
setting, our existing data may be insufficient and new mappabil-
ity and cross-mappability estimates should be derived. In the ini-
tial resource provided, we used k-mer alignment to the genome,
which does not directly handle splice junctions in transcrip-
tomic data (and also limits appropriate k-mer length even for
studies with longer reads). Alignment to the transcriptome or
splice-aware alignment may offer future improvements, but
computational cost and inaccuracies due to incorrect annota-
tion will have to be evaluated. Our observations and methods
may be relevant to analyses of other functional genomic data
as well, including detection of interactions from HI-C, and
detection of associations with data types such as ATAC-seq or
ChIP-seq. Other approaches, such as filtering reads themselves
before quantification can also be applied if raw reads rather
than quantified data are available and tractable'”.

Our evaluation provides evidence that misalignment of reads
should be considered as a potential source of false positives in
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association studies, particularly for trans-eQTL analysis. The
resources we provide can be used directly to filter potential false
positives, or the ideas presented may be tuned and adapted to
new studies and data types.

Data availability

Underlying data

Pre-computed cross-mappability resources for human genomes
(hgl9 and GRCh38) are available on figshare, DOIL: 10.6084/
m9.figshare.c.4297352.v4". GTEx (v7) expression and cov-
ariate data are available from www.gtexportal.org. GTEx (v7)
genotype data are available from dbGap (accession number:
phs000424.v7.p2). DGN data are available by application
through NIMH. Other data, including annotations and intermedi-
ate results, required to reproduce analyses in the manuscript are
available on figshare, DOI: 10.6084/m9.figshare.7309625.v2%.

Extended data
Supplementary Figure 1-Supplementary Figure 11 are available on
figshare, DOI: 10.6084/m9.figshare.7359539.v27!.

Supplementary Figure 1. Cross-mappability statistics.
(A) Distribution of cross-mappability between cross-mappable
pairs of genes, restricted to gene pairs with cross-mappability > 0,
using Gencode v19 annotations on human genome hgl9.
(B) Background percentage of cross-mappable gene pairs between
all available expressed genes in GTEx data, categorized by tis-
sue. For both panels, directed gene pairs were used; i.e., (Gene A,
Gene B) and (Gene B, Gene A) pairs were considered different.

Supplementary Figure 2. Cross-mappability among top
trans-eQTLs. Detected (A) using protein-coding genes in
GTEx, (B) using genes with mappability = 0.8 in GTEx,
(C) using protein-coding genes with mappability > 0.8 in GTEXx,
and D) by PancanQTL where unique eQTLs were ordered by
lowest p-value across all cancer types.

Supplementary Figure 3. Large number of trans-eQTLs
among random cross-mappable gene pairs. We tested for
trans-eQTLs taking the same number of random variant-gene
pairs in 3 different categories: 1) Not cross-mappable, 2) Cross-
mappable, and 3) Cross-mappable (Top). In the first category, we
randomly selected 1,000 not cross-mappable gene pairs (gl, g2)
where gl and g2 were on different chromosome and there was
at least one variant near gl (within 1Mb of the TSS of gl),
then selected the best cis-variant s (with lowest p-value) for
gl, and finally tested for trans-association between s and g2.
Variant-gene pairs for other two categories were selected in a
similar way as the first category except that the gene pairs were
cross-mappable (crossmap(gl, g2) > 0) in the second category, and
highly cross-mappable (among top 10,000 cross-mappable pairs)
in the third category. The above plot shows the number of
significant trans-eQTLs (y-axis) detected at a given FDR (x-axis)
in each category (line marker) in each tissue (color).

Supplementary Figure 4. Composition of trans-eQTLs.
(A) Representation of gene types among trans-eQTL target
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genes, categorized by cross-mappability. (B) Proportion of cross-
mappable eQTLs categorized by gene type. Only the four
most frequent gene types in trans-eQTL hits are shown. (C)
Among trans-eQTLs with a pseudogene target gene, quantifica-
tion of different pseudogene sub-types, categorized by cross-
mappability. Pseudogene sub-types were identified from the
Gencode v26 annotation, as subtypes are not available in Gen-
code v19. The five most frequent types among trans-eQTL
hits are shown.

Supplementary Figure 5. Correlation between random
gene pairs using uncorrected data. Each violin plot shows the
distribution of absolute Pearson correlation (y-axis) between
uncorrected gene expression levels of 10,000 randomly drawn
gene pairs in a tissue (color). The p-value of the Wilcoxon test to
determine whether cross-mappable genes are more correlated than
not cross-mappable genes in each tissue is shown in the legend.

Supplementary Figure 6. Correlation between random gene
pairs increases with cross-mappability. Gene pairs available
in each tissue were categorized into 22 groups (x-axis) based on
quantiles. A quantile group "gq, — g,(n)" represents gene pairs
of (¢, * 100, g, * 100]-th percentile of cross-mappability with
a total of n pairs. In order to visualize the impact of the highest
range of cross-mappability, the rightmost nine quantile groups
were selected in such a way that each contains about a certain
number of pairs: (from right) 2,000, 2,000, 2,000, 2,000,
2,000, 5,000, 10,000, 25,000, 50,000. The leftmost quantile
group "0" represents gene pairs which are not cross-mappable.
From each group, 1,000 gene pairs were randomly selected
where the probability of drawing a pair was proportional to its
cross-mappability. Each violin plot shows the distribution of abso-
lute Pearson correlation (y-axis) between corrected expressions
of the genes in each pair.

Supplementary Figure 7. Increased correlation between cross-
mappable genes is not exclusively due to sequence similar-
ity between genes from same gene family. Here, two genes in
the same HGNC gene family were artificially excluded from
cross-mappable pairs. We computed the absolute Pearson corre-
lation between gene pairs within different groups as described in
Figure 4A and Supplementary Figure 6. Note: gene family
information was downloaded from www.genenames.org.
(A-B) Comparison of co-expression between 10,000 randomly
drawn pairs of cross-mappable and not cross-mappable genes
in Muscle — Skeletal (A) and Whole Blood (B). (C—-D) Random
correlation between genes in Muscle — Skeletal (C) and Whole
Blood (D).

Supplementary Figure 8. Co-expression analysis using gene
expression data from DGN. (A) Comparison of co-expression
between 10,000 randomly drawn cross-mappable and non-
cross-mappable gene pairs. (B) Random correlation between
genes in DGN increases with cross-mappability.

Supplementary Figure 9. Fraction of gene pairs with cross-
mappability > 100 among the top co-expressed genes,
categorized by GTEXx tissues.
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Supplementary Figure 10. Effects of varying k-mer length
and the number of mismatches allowed. Cross-mappability
among the top GTEx trans-eQTLs when (A) 75-mers (instead of
36-mers) from UTRs were used, (B) a maximum of 3 (instead of
2) mismatches were allowed. 67.2% and 76.1% of the significant
trans-eQTLs remain cross-mappable in (A) and (B), respectively,
compared to 75.14% using 75-mers from exons and 36-mers from
UTRs with 2 mismatches in the original analysis. In both cases,
cross-mappable trans-eQTLs still tend to be the most highly
significant.

Supplementary Figure 11. Effects of EM-based quantifica-
tion methods. We downloaded transcript-level quantifications
based on RSEM” from GTEx and derived gene-level TPMs
using the tximport package™ in R. We used same set of genes
and samples as available in the regular gene-level quantifica-
tions used in our main GTEx eQTL anaylysis. Following the
GTEx pipeline, we normalized gene expression values between
samples using TMM as implemented in edgeR* and then per-
formed an inverse normal transformation of expression values
for each gene across all samples. (A) We computed the number
of cis-eGenes on two chromosomes (chr7 and chrl4) for differ-
ent numbers of PEER factors, estimated from RSEM-quantifed
gene-level data for each tissue. As in the standard GTEx
Consortium analysis, the number of cis-eGenes tended to increase
with the number of PEER factors. With no clear difference in
behavior, we opted to use the same number of PEER factors as
used in the standard analysis, along with three genotype PCs,
genotyping platform and sex. (B) The plot shows trans-eQTL
p-values using RSEM-quantified data (y-axis) vs. standard
RNA-SeQC GTEx data (x-axis), for each significant trans-
eQTL (point) in whole blood. Here, the color represents whether
the eQTL is cross-mappable or not, and the symbol represents
whether the target gene is a pseudogene or not. The majority of
points lie close to the diagonal line, indicating the two
quantification methods give mostly similar results, regardless
of gene type and including the majority of cross-mappable hits.
A few points along the horizontal line at y=0 shows that a small
fraction SNP-gene pairs are no longer significant with RSEM-
quantified gene expression and most of them are cross-mappable
pseudogenes. Thus RSEM offers some modest improvement,
but does not resolve the majority of problematic hits. (C) We
computed trans-eQTLs genome-wide using RSEM-quantified
data. A total of 27,035 trans-eQTLs were detected at FDR < 0.05,
60.17% of which were cross-mappable compared to 75.14%
with RNA-SeQC-quantified data. The plot shows the frac-
tion of cross-mappable trans-eQTLs among the top significant
variant-gene pairs (ordered by increasing FDR) in each tissue
(color). Again, we observe a modest improvement from RSEM.
(D) Fraction of top co-expressed genes that are cross-mappable
and thus potential false positives. Cross-mappable gene pairs
still appear abundant in most correlated genes of multiple tissues.
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Software availability
GitHub repository to compute cross-mappability:
github.com/battle-lab/crossmap.

https:/

Archived code at time of publication: https://doi.org/10.5281/
7en0do.2602096'°,

License: GPL-3.

GitHub repository to replicate analyses in the manuscript:
https://github.com/battle-lab/crossmap_analysis.

Archived code at time of publication: https://doi.org/10.5281/
zen0do.2602170,

License: GPL-3.
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In their revision, the authors addressed a comment in my initial report that EM-based quantification
methods may, to some degree, alleviate the cross-mapping problem. In their Supplementary Figure 11,
they show that using RSEM to estimate expression removes some of the false positive trans eQTL (points
on the x-axis), but that the majority of FP trans eQTL persist (points on the diagonal). They have therefore
addressed all of my initial comments/concerns. The added distinction between mappability and
cross-mappability is also useful.
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Aaron R. Quinlan
Department of Human Genetics, USTAR (Utah Science Technology and Research) Center for Genetic
Discovery, University of Utah, Salt Lake City, UT, USA

Most assays that leverage high-throughput DNA sequencing ultimately involve counting molecules that
align to genome loci. The observed counts are, in turn, used as proxies for some underlying cellular
phenomenon. If the process of sequence alignment is fundamentally biased, so too will be the
observations and potential conclusions drawn.

In this manuscript, Saha and Battle explore the important role of sequence similarity between genes
("cross-mapping") on the spurious detection of trans eQTLs and gene co-expression. In particular, they
argue that up to 75% of trans e-QTLs detected with standard methods could be spurious owing to
systematic mapping (and thus both downstream read-counting and subsequent expression measures)
artifacts caused by sequence similarity. This manuscript is well-structured, easy to read, and provides yet
another warning that properly accounting for mapping and alignment artifacts is critical genomic research.
The approach and analyses are sound overall. However, there are a few area that would benefit from
clarification, and some technical aspects that warrant greater detail and perhaps further analysis.

1. Choice of k-mer size. While the choice of k=75 for exons and k=36 for UTRs is certainly
reasonable, one wonders whether these choices provide the greatest power to detect and quantify
cross-mappability. Were analyses conducted to choose these k-mer sizes empirically? It would
also be nice to add methods describing from which gene models the k-mers were derived.
Furthermore, 5' UTRs are, on average, only slightly smaller than the typical exon, and 3' UTRs are
actually larger on average (https:/gist.github.com/arq5x/0d44bae195fc6260984ee01fd253712c).
Therefore, it is not clear that k=36 for UTRs versus k=75 for exons is well-justified.

2. When reading the manuscript, one naturally wonders whether the effects revealed by
cross-mappability could be detected via existing "mappability” scores from ENCODE and others. It
would helpful to have an explicit discussion and/or analysis of how this metric differs.

3. By my reading and interpretation of Figure 1B, k-mers spanning exon/exon junctions were not
modeled. This is perhaps critical given the results describing an enrichment of cross-mappable
eQTLs corresponding to processed pseudogenes.

4. Echoing the point raised by Rob Patro, it is important to understand how the gene expression
qualification was done for GTeX and discuss how these methods impact cross-mappability
analysis.

5. Mappability is defined as 1/C_k where C_k is the number of genomic loci to which the k-mer aligns
with <= 2 mismatches. Given sequencing errors, polymorphism, and the fact that RNA-seq is
actually cDNA-seq, one might be concerned that allowing more mismatches (and/or INDEL errors)
would more properly model cross-mappability. While perhaps a minor concern, it would be nice to
know how much the scores and resulting cross-mappability table differ with tolerance for larger edit
distances.

6. In the results describing an enrichment of spurious trans eQTLs associated with cross-mapping
pseudogenes, it is unclear whether the authors are referring to all types of pseudogenes or solely
processed pseudogenes. Crossmapping could arise from both "classic" (i.e., duplicated owing to
NAHR) and "processed" (i.e., mature RNAs duplicated/inserted into the genome). However, the
effect of excluding k-mers that span exon/exon boundaries from the cross-mappability would have
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a differential effect on these two types of pseudogenes. It would be helpful to be explicit in which
types of pseudogenes are being discussed.

7. SNPs were excluded from evaluation if they overlapped annotations in the RepeatMasker track. |
would argue that SNPs should (and typically would be) excluded if they lie within segmental
duplications. Such regions also harbor genes with a high degree of paralogy (because of the
ancestral duplication) and if excluded, may have a substantial impact on the results. For example, |
suspect many "classic" pseudogenes would also be excluded were SNPs in segmental
duplications excluded. While | have never conducted a trans eQTL analysis, | suspect that removal
of segdups is standard practice owing to the inherently high paralogy between duplicated regions.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: Human genomics, computational genomics, structural variation, genome evolution

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Ashis Saha, Johns Hopkins University, Baltimore, USA

Thank you for reviewing our paper. Please see our responses inline in bold and italic font
following your comments in standard font.

Most assays that leverage high-throughput DNA sequencing ultimately involve counting molecules
that align to genome loci. The observed counts are, in turn, used as proxies for some underlying
cellular phenomenon. If the process of sequence alignment is fundamentally biased, so too will be
the observations and potential conclusions drawn.

In this manuscript, Saha and Battle explore the important role of sequence similarity between
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genes ("cross-mapping") on the spurious detection of trans eQTLs and gene co-expression. In
particular, they argue that up to 75% of trans e-QTLs detected with standard methods could be
spurious owing to systematic mapping (and thus both downstream read-counting and subsequent
expression measures) artifacts caused by sequence similarity. This manuscript is well-structured,
easy to read, and provides yet another warning that properly accounting for mapping and
alignment artifacts is critical genomic research. The approach and analyses are sound overall.
However, there are a few area that would benefit from clarification, and some technical aspects
that warrant greater detail and perhaps further analysis.

>> Thank you for your positive assessment of our approach.

1. Choice of k-mer size. While the choice of k=75 for exons and k=36 for UTRs is certainly
reasonable, one wonders whether these choices provide the greatest power to detect and quantify
cross-mappability. Were analyses conducted to choose these k-mer sizes empirically? It would
also be nice to add methods describing from which gene models the k-mers were derived.
Furthermore, 5' UTRs are, on average, only slightly smaller than the typical exon, and 3' UTRs are
actually larger on average (https://gist.github.com/arq5x/0d44bae195fc6260984ee01fd253712c).
Therefore, it is not clear that k=36 for UTRs versus k=75 for exons is well-justified.

>> We appreciate this consideration. To alleviate such concerns regarding the value of k,
we have provided options to select appropriate k for exons or UTRs in our code for users
that would prefer a different setting. Our choice of k=75 was originally guided by the
RNA-seq read-length of the GTEXx data, and a reduced length for UTRs based on manual
investigation of our top hits suggesting that k=75 for UTRs left too many questionable
instances unfiltered. However, because there is no gold standard for which trans-eQTLs
are truly false positives, we did not think of a way to tune this more closely.

To provide further insight, we have also now computed cross-mappability using 75-mers

from both exons and UTRs and shared these resources publicly. We also shared

resources with 50-mers from exons and 36-mers from UTRs. Using 75-mers from both

exons and UTRs, 67.2% of unique trans-eQTLs appeared as cross-mappable, compared to

75.1% when 75-mers from exons and 36-mers from UTRs were used. We believe it is likely

missing some false-positives at this larger k, but we cannot prove this for

certain. Cross-mappable eQTLs still tend to be the most highly significant. We have

added discussion of the issue in the manuscript along with Supplementary Figure 10A.

® “Researchers should carefully choose settings according to the study design and

goals. Genome version and gene annotations can be directly matched, but other
parameter choices such as k and the maximum number of mismatches allowed in
alignment may affect the detection of false positives. Small values of k will produce
more conservative cross-mappability scores, but large k may not correctly handle
small exons or UTRs. For example, if 75-mers (instead of 36-mers) were used from
UTRs, a smaller proportion of trans-eQTLs (67.2% instead of 75.14%) would appear
as cross-mappable in GTEXx, although cross-mappable trans-eQTLs would still tend
to be most highly significant (Supplementary Figure 10A)”

We also clarified that we used a collapsed gene model to generate k-mers where

overlapped exons and overlapped UTRs were merged to form exonic and UTR regions,

respectively. A locus that overlaps both an annotated UTR and an annotated exon will be

considered as both.
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2. When reading the manuscript, one naturally wonders whether the effects revealed by
cross-mappability could be detected via existing "mappability” scores from ENCODE and others. It
would helpful to have an explicit discussion and/or analysis of how this metric differs.

>> Thank you for raising the point. Existing "mappability" scores (described by either
Derrien et al. or Karimzadeh et al.) correspond to a single genomic region (e.g., gene). In
contrast, our "cross-mappability" score corresponds to a pair of genes. While mappability
score tells about how unique the sequences of a gene (or a region) is, it does not talk
about how similar the sequences of a given pair of genes are. A gene with mappability=1
(mappability = 1 for every k-mer of the gene) will have cross-mappability = 0 from/to any
other gene (we directly used this property to optimize our computation of
cross-mappability genome-wide). However, cross-mappability between two genes with
mappability < 1 cannot be revealed by mappability. We now described the difference
between these two metrics in the revised manuscript. Genes with mappability < 1 may
indeed cross-map with other genes, or may have sequence similarity with non-transcribed
regions of the genome, in which case they would not appear cross-mappable in our
analysis.
® “Notably, existing mappability scores [4, 5] correspond to a single region (or gene)
describing uniqueness of the sequences of the region in the genome, our
cross-mappability score corresponds to a pair of genes describing similarity
between the sequences of the genes."

3. By my reading and interpretation of Figure 1B, k-mers spanning exon/exon junctions were not
modeled. This is perhaps critical given the results describing an enrichment of cross-mappable
eQTLs corresponding to processed pseudogenes.

>> We appreciate your concern. We do think accounting for k-mers spanning exon-exon
junctions would offer improvements of cross-mappability, and we plan to investigate this
further. Please see our response to Rob Patro for details.

4. Echoing the point raised by Rob Patro, it is important to understand how the gene expression
qualification was done for GTeX and discuss how these methods impact cross-mappability
analysis.

>> We agree. We performed additional analyses using RSEM-quantified gene expressions
and we still observed potential false positives in our analyses. Please see our response to
Mike Love for details along with new Supplementary Figure 11.

5. Mappability is defined as 1/C_k where C_k is the number of genomic loci to which the k-mer
aligns with <= 2 mismatches. Given sequencing errors, polymorphism, and the fact that RNA-seq
is actually cDNA-seq, one might be concerned that allowing more mismatches (and/or INDEL
errors) would more properly model cross-mappability. While perhaps a minor concern, it would be
nice to know how much the scores and resulting cross-mappability table differ with tolerance for
larger edit distances.

>> This is a good point. The number of mismatches is a configurable parameter of our
code, and one can compute cross-mappabilities with any desired value. The
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cross-mappability scores may increase if the allowed number of mismatches is increased.

We have now also added an additional analysis with <=3 mismatches (Bowtie v1 allows

max 3 mismatches) along with new Supplementary Figure 10B. Maximum 3 mismatches

results in a slightly higher percentage of cross-mappable trans-eQTLs than maximum 2

mismatches (76.1% vs. 75.14%).

®  “Similarly, increasing the number of mismatches allowed in k-mer alignment results

in an increased number of cross-mappable trans-eQTLs (Supplementary Figure
10B)”

6. In the results describing an enrichment of spurious trans eQTLs associated with cross-mapping
pseudogenes, it is unclear whether the authors are referring to all types of pseudogenes or solely
processed pseudogenes. Crossmapping could arise from both "classic" (i.e., duplicated owing to
NAHR) and "processed" (i.e., mature RNAs duplicated/inserted into the genome). However, the
effect of excluding k-mers that span exon/exon boundaries from the cross-mappability would have
a differential effect on these two types of pseudogenes. It would be helpful to be explicit in which
types of pseudogenes are being discussed.

>> This is a good suggestion. It would be nice to see how different types of pseudogenes
contribute to cross-mappability. Gencode v19 annotation does not distinguish among
different types of pseudogenes, so we mapped the types of pseudogenes from Gencode
v26 annotation, which should be sufficiently accurate for aggregate characterization. Our
results show that processed pseudogenes are most common source of
cross-mappability, while other pseudogenes do also contribute to cross-mappability. We
added an extra plot in Supplementary Figure 4 showing the representation of different
types of pseudogenes in trans-eQTLs with pseudogene targets.

7. SNPs were excluded from evaluation if they overlapped annotations in the RepeatMasker

track. | would argue that SNPs should (and typically would be) excluded if they lie within
segmental duplications. Such regions also harbor genes with a high degree of paralogy (because
of the ancestral duplication) and if excluded, may have a substantial impact on the results. For
example, | suspect many “classic" pseudogenes would also be excluded were SNPs in segmental
duplications excluded. While | have never conducted a trans eQTL analysis, | suspect that removal
of segdups is standard practice owing to the inherently high paralogy between duplicated regions.

>> This is a good point. We do mask SNPs based on RepeatMasker, but this only covers a
subset of segdups. In general for our false positives, the SNP is actually not within a
segdup itself (segdup SNP eQTLs display a slightly higher rate of cross-mappability than
background - 83% vs 75%) . The classic pattern is a SNP in the cis-region of one gene
appearing associated with a distant region similar to the cis-gene (potentially a segdup in
some cases), but the region of similarity does not include the SNP locus. Excluding
pseudogenes and/or segdups from candidate genes in a trans-eQTL study is certainly one
option. Making SNPs or excluding genes in segdups does not appear to be standard
practice to the best of our knowledge, nor does it cover every likely false positive we
observe, but is a change worth considering to standard trans-eQTL pipelines.

Competing Interests: No competing interests were disclosed.
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© 2018 Patro R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

v

Rob Patro
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA

In this manuscript, Saha and Battle describe how errors in the genomic alignment of RNA-seq data can
confound specific downstream analyses. Specifically, the focus on the discovery of trans-eQTLs and on
co-expression analysis. Surprisingly, they find that, when a "naive" pipeline is used for trans-eQTL
discovery, up to 75% of the trans-eQTL events detected may be false positives resulting from
cross-mappability (the type of alignment error they discuss and characterize). In addition to describing
this phenomenon, and demonstrating its effect on trans-eQTL and co-expression analysis, the authors
also propose a new "cross-mappability" score, which allows one to map out which genes in a reference
are likely to suffer from the types of spurious alignments, and subsequently, spurious correlations, that are
described. The idea of cross-mappability seems a useful and logical extension of the mappability
concept, where one is instead interested in which pairs or groups of genes share homologous sequence.
The authors also provide pre-computed cross-mappability scores for hg19 and GRCh38.

The paper is well-written, and the issues that the authors raise are important ones. It suggests that
researchers should be cautious in interpreting the results of eQTL and co-expression analyses, and,
importantly, provides them with tools to reassess their data and help control for the strong potential
confounding factor of cross-mappability. | believe this is an important contribution.

My main questions and comments about the manuscript concern cross-mappability scores, and the
alignment errors that lead to the observed problems.

® Though the authors only explore the effect of alignment errors on eQTL and co-expression
analysis, it seems that these types of issues could affect most analyses involving spliced-mapping
of RNA-seq data to the reference genome. Specifically, the type of alignment errors illustrated in
Figure 1 (A) would affect even basic expression quantification, let-alone co-expression analysis.
This is particularly true for reads where this effect persists even when one considers only reads
aligned uniquely by the tool. What would cause the aligner to return only a single (incorrect) locus
for the read when multiple equally-good alignments should exist? Are the alignments contiguous at
one locus but spliced at the other, or is the manner in which the read would align to the "true" and
"spurious” locus different? Interestingly, it seems as though the cross-mappability map could act as
a sort of homology table 1 that might even be useful for correcting these spurious alignments, or at
least suggesting the true locus as an equally-good match.

®  Given that cross mappability is computed by mapping specific k-mers back to the genome
(allowing up to 2 mismatches) using Bowtie, how does it deal with accounting for k-mers that span
splicing junctions? It seems to me that the specific case where reads map to pseudogenes rather
than what is presumed to be the true (protein-coding) locus of the read could be explained by
regions of the genome that are contiguous (un-spliced) in the pseudogene, but which span a
splicing junction in the protein coding gene. If the cross-mappability score doesn't account for the
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cross-mappability of k-mer that may span splice junctions, then it seems it might miss such
important cases. However, given that the score is computed assuming some known annotation, it
would be possible to explicitly extract appropriately-sized contexts around each known splicing
junction, and to include them into the reference that Bowtie maps against when computing the
cross-mappability scores. How would the cross-mappability scores change if they also accounted
for junction-spanning k-mers rather than just genomically contiguous k-mers?

® Related to the above point, but thinking in the other direction, might the cross-mappability scores
be too "conservative" in some cases? Specifically, the scores are computed using k-mers that are
the length of relatively short reads for exons, and k-mers that are much shorter than typical reads
for UTRs. However, the ambiguity of these sequences individually may not be sufficient to induce a
false alignment when the reads being processed are paired-end reads. In that case, one would
expect misalignments to require that there be sequence ambiguity supporting both ends of the
sequencing read in order for the read to align, concordantly, to the wrong locus.

® The GTEx data that was analyzed relies on spliced alignment to the genome using STAR, and |
presume the same tools were used to analyse the DGN cohort data (is this correct?). It would be
enlightening to see if and how results would change if the reads were instead aligned using
HISAT2. | am aware, for example, that HISAT2 takes special measures to avoid aligning reads to
pseudogenes when similar quality alignments to transcripts of other biotypes are available
(personal communication with Daehwan Kim). This may have some effect on the type and
magnitude of false alignments you see (though, certainly, will not account for all of them).
Likewise, it would be very interesting to see how the analyses differ if alignment is done directly to
the transcriptome using, e.g., Bowtie2 ( the authors already mention this possibility in the
discussion section).

® | agree with Mike Love's suggestion that it seems important to explore the extent to which this
effect may be mitigated by adopting more accurate methods for gene expression quantification.

References
1. Yorukoglu D, Yu Y, Peng J, Berger B: Compressive mapping for next-generation sequencing. Nature
Biotechnology. 2016; 34 (4): 374-376 Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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sequencing data, with some specific focus on methods for gene and transcript quantification and de novo
transcriptome analysis.

I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Ashis Saha, Johns Hopkins University, Baltimore, USA

Thank you for reviewing our paper. Please see our responses inline in bold and italic font
following your comments in standard font.

In this manuscript, Saha and Battle describe how errors in the genomic alignment of RNA-seq data
can confound specific downstream analyses. Specifically, the focus on the discovery of
trans-eQTLs and on co-expression analysis. Surprisingly, they find that, when a "naive" pipeline is
used for trans-eQTL discovery, up to 75% of the trans-eQTL events detected may be false
positives resulting from cross-mappability (the type of alignment error they discuss and
characterize). In addition to describing this phenomenon, and demonstrating its effect on
trans-eQTL and co-expression analysis, the authors also propose a new "cross-mappability” score,
which allows one to map out which genes in a reference are likely to suffer from the types of
spurious alignments, and subsequently, spurious correlations, that are described. The idea of
cross-mappability seems a useful and logical extension of the mappability concept, where one is
instead interested in which pairs or groups of genes share homologous sequence. The authors
also provide pre-computed cross-mappability scores for hg19 and GRCh38.

The paper is well-written, and the issues that the authors raise are important ones. It suggests that
researchers should be cautious in interpreting the results of eQTL and co-expression analyses,
and, importantly, provides them with tools to reassess their data and help control for the strong
potential confounding factor of cross-mappability. | believe this is an important contribution.

>> Thank you, we are appreciate your comments on our contribution.

My main questions and comments about the manuscript concern cross-mappability scores, and
the alignment errors that lead to the observed problems.

® Though the authors only explore the effect of alignment errors on eQTL and co-expression
analysis, it seems that these types of issues could affect most analyses involving spliced-mapping
of RNA-seq data to the reference genome. Specifically, the type of alignment errors illustrated in
Figure 1 (A) would affect even basic expression quantification, let-alone co-expression analysis.
This is particularly true for reads where this effect persists even when one considers only reads
aligned uniquely by the tool. What would cause the aligner to return only a single (incorrect) locus
for the read when multiple equally-good alignments should exist? Are the alignments contiguous at
one locus but spliced at the other, or is the manner in which the read would align to the "true" and
"spurious" locus different? Interestingly, it seems as though the cross-mappability map could act as
a sort of homology table 1 that might even be useful for correcting these spurious alignments, or at
least suggesting the true locus as an equally-good match.
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>> Thank you for this comment. We agree that alignment errors potentially affect
quantification of expression including splicing-aware quantifications. We observed
cross-mapping errors even when only uniquely-mapped reads were used in the
quantification (for e.g., in GTEx v7). There could be several reasons an aligner returns
only a single incorrect locus for the read when multiple equally-good alignments should
exist including genetic variation, errors in the reference genome, incorrect annotations,
ambiguity due to splicing, and sequencing errors. It is difficult to assess the relative
contribution of each of these. We briefly mentioned the issues in the Introduction section
of the manuscript.
® “some alignment errors may remain between similar regions even among uniquely
aligned reads due to genetic variation, errors in the reference genome, and other
complications."

Regarding the pattern of alignment errors in “true" and "spurious" loci, we manually
inspected suspected false positives, but did not observe any clear pattern of alignment
errors. We observed multiple classes of errors including cases where alignment is
contiguous at one locus (either true or spurious) but spliced at the other locus, and cases
where alignment is contiguous at both loci.

Finally, it is a nice idea to see if alignment methods could directly utilize our
cross-mappability resources or related approaches. We would be interested to follow up
on this.

® Given that cross mappability is computed by mapping specific k-mers back to the genome
(allowing up to 2 mismatches) using Bowtie, how does it deal with accounting for k-mers that span
splicing junctions? It seems to me that the specific case where reads map to pseudogenes rather
than what is presumed to be the true (protein-coding) locus of the read could be explained by
regions of the genome that are contiguous (un-spliced) in the pseudogene, but which span a
splicing junction in the protein coding gene. If the cross-mappability score doesn't account for the
cross-mappability of k-mer that may span splice junctions, then it seems it might miss such
important cases. However, given that the score is computed assuming some known annotation, it
would be possible to explicitly extract appropriately-sized contexts around each known splicing
junction, and to include them into the reference that Bowtie maps against when computing the
cross-mappability scores. How would the cross-mappability scores change if they also accounted
for junction-spanning k-mers rather than just genomically contiguous k-mers?

>> Thanks for raising this important issue. We did not account for k-mers spanning splice
junctions and thus our current approach might miss some cross-mapping cases.
However, we expect that for many genes with reasonable length exons, some k-mers that
fall completely within the exon will also cross-map, and the genes will be identified as
cross-mapping by our method in this case, but exceptions to this will also

occur. Cross-mappability scores would sometimes increase (but not decrease) if
junction-spanning k-mers are considered, and we would need to consider whether these
are also sometimes spurious. We mention in the manuscript that alignment to the
transcriptome or splice-aware alignment might offer future improvements, but the
computational cost and potential for some inaccuracies due to incorrect annotation would
also have to be evaluated.

Page 21 of 28



FIOOOResearch F1000Research 2019, 7:1860 Last updated: 15 JUL 2019

In future work, we plan to extend cross-mappability scores using splice-aware
alignments. One challenge here is to find all alignments of a k-mer using a spliced aligner.
Spliced aligners are generally optimized to find the best alignment, and it is not as fast to
find all alignments. Our current plan is to use STAR aligner (instead of Bowtie in the
current setting) with a high number of multiple alignments allowed per read. In addition,
we have to modify the k-mer generation process to include exon-exon junction spanning
k-mers. Our plan is to evaluate every k-mer spanning exon-exon junctions of the
annotated transcripts from a gene, along with the k-mers from the current collapsed gene
model. As the k-mer generation process and the alignment process are going to be
changed, we can no longer use the GEM Library to compute mappability of each k-mer;
we will have to implement this part as well. We leave the implementation of this, and
evaluation, as future work, but agree it could offer improvements.

® Related to the above point, but thinking in the other direction, might the cross-mappability
scores be too "conservative" in some cases? Specifically, the scores are computed using k-mers
that are the length of relatively short reads for exons, and k-mers that are much shorter than typical
reads for UTRs. However, the ambiguity of these sequences individually may not be sufficient to
induce a false alignment when the reads being processed are paired-end reads. In that case, one
would expect misalignments to require that there be sequence ambiguity supporting both ends of
the sequencing read in order for the read to align, concordantly, to the wrong locus.

>> This is a good observation. Yes, depending on the goal of the analysis,
cross-mappability scores may be conservative in some situations. In a simple case, the
value of k we used may be too short for some studies. One can easily recompute
cross-mappabilities with appropriate k for the sequencing protocol, using our released
code. Also, as you mentioned in the comment, misalignment of paired-end reads would
require sequence ambiguity in both ends. Thus, our method may conservatively suggest
two genes are cross-mappable, when paired-end reads would mostly or completely
resolve the ambiguity. To compute cross-mappability incorporating pair-ended k-mers, we
would need to model the distribution of fragment lengths in addition to splice junctions,
which we have not yet addressed here. For simplicity and usability of our resources
across different studies with different sequencing methods, we treat k-mers like
single-ended reads. In general, small cross-mappability scores (where only a few k-mers
overlap between genes) may not be sufficient to introduce alignment errors. One can
easily filter gene pairs more stringently by thresholding the cross-mappability scores to
higher numbers, which may weakly approximate requiring both ends of reads to align.
Importantly, we do not claim that all instances of co-expression or trans-associations
between cross-mappable pairs are actually false positives, some sequence similarity may
occur between genes where a true hit also exists. One should consider the baseline rate
of cross-mapping compared with that among observed hits, along with parameters of the
study that may necessitate a specialized analysis.

® The GTEx data that was analyzed relies on spliced alignment to the genome using STAR,
and | presume the same tools were used to analyse the DGN cohort data (is this correct?). It would
be enlightening to see if and how results would change if the reads were instead aligned using
HISAT2. | am aware, for example, that HISAT2 takes special measures to avoid aligning reads to
pseudogenes when similar quality alignments to transcripts of other biotypes are available
(personal communication with Daehwan Kim). This may have some effect on the type and
magnitude of false alignments you see (though, certainly, will not account for all of
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them). Likewise, it would be very interesting to see how the analyses differ if alignment is done
directly to the transcriptome using, e.g., Bowtie2 ( the authors already mention this possibility in the
discussion section).

>> Good points. Firstly, GTEx and DGN used different alignment and quantification tools.
While GTEx v7 used STAR for alignment and RNA-SeQC for quantification, DGN used
TopHat for alignment and HTSeq for quantification. False positives are observed for
multiple tools. Secondly, we definitely agree avoiding pseudogenes (using
--avoid-pseudogene option in HISAT2 or using other tools) would have an effect on the
number of false positives. Another option is to simply not map trans-eQTLs for
pseudogenes (or other biotypes) at all, which some studies in fact do. As mentioned in
the manuscript that 42.4% of eQTLs corresponding to protein-coding genes were also
cross-mappable, compared to 75.14% of all eQTLs). This is lower than for pseudogenes,
but still above the expected background level, giving us an idea of the impact such a
change would have. Of course, most researchers use public datasets without re-aligning
them, so our resource shouldn’t rely on a specific aligner or parameters. Finally, we agree
that alignment to the transcriptome would be an important avenue for future research.

® | agree with Mike Love's suggestion that it seems important to explore the extent to which this
effect may be mitigated by adopting more accurate methods for gene expression quantification.

>> We agree. We performed additional analyses using RSEM-quantified gene expressions
and we still observed potential false positives in our analyses. Please see our response to
Mike Love for details along with Supplementary Figure 11.

Competing Interests: No competing interests were disclosed.
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Michael I. Love
Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA

The authors present a detailed analysis of how false positives arise in trans-eQTL and co-expression
analyses, due to cross-mapping of reads among genes with sequence homology. They present a
cross-mappability metric, and provide pre-computed cross-mappability for two human Gencode
annotations (v19 and v26). They also provide software for efficiently computing cross-mappability
available at a GitHub link. The command line software has detailed instructions online. The software
requires genome FASTA files, a GTF file, a mappability bedgraph or bigwig file, Bowtie (v1) and an index,
and a few R packages (data.table, intervals, argparser, stats).

The report provides an important warning to the research community, and the pre-computed
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cross-mappability and the software will be a valuable resource for groups studying trans-eQTL and
co-expression and making use of unique read counts for gene expression quantification.

One of the key points of the article is noting that the cross-mappable and likely spurious trans-eQTLs are
highly replicable between datasets, because "it is driven by the underlying sequence of the genome, and
similar alignment errors frequently occur regardless of tissue and study." This logic also extends to
co-expression and gene networks built on gene-gene expression correlations. Another key point was that
filtering out of cross-mappable trans-eQTLs necessitates re-assessment of FDR, as the highly significant
cross-mappable trans-eQTLs bring down the nominal FDR for other eQTLs.

My main comment on the article is regarding details of the gene expression quantification.
The authors note that,

"The number of reads misaligned to Gene B across samples may be directly proportional to the number of
reads for Gene A, or may be determined by genetic variation creating sequence mismatches with the
correct region....We note that such errors are not entirely mitigated by filtering multi-mapped reads—some
alignment errors may remain between similar regions even among uniquely aligned reads due to genetic
variation, errors in the reference genome, and other complications."

How would the analysis change if an expectation maximization (EM) approach were used for quantifying
transcript and gene expression, where a latent variable is used for the origin of each read or pair of reads
(both across isoforms and gene loci)? Such methods may resolve issues as shown in Figure 1A, because
the observed coverage and expression of only gene A may give a higher likelihood than the observed
coverage and expression of gene A and gene B. However the degree to which these methods may offer
an improvement with respect to the cross-mappability issue depends on the distribution of genetic
variation and errors in the reads, and on potential errors in the reference genome/transcriptome and on
incomplete gene annotations. Therefore, it would be critical to perform the trans-eQTL analysis with
regards to cross-mappability, when an EM algorithm, or a similar method that resolves multi-mapping
reads, is used to quantify gene expression. Methods such as RSEM, Kallisto, or Salmon may be used

to quantify gene and transcript abundance, which use EM or variational Bayes EM to resolve
multi-mapping reads (as well as reads consistent with multiple isoforms of a gene) (disclosure: | am a
co-author of the Salmon method).

The authors note that:

"Alignment to the transcriptome or splice-aware alignment may offer future improvements, but
computational cost and inaccuracies due to incorrect annotation will have to be evaluated.”

One potential solution which may alleviate both the issue of cross-mappability and incorrect annotation,
would be to use an isoform discovery method to detect and characterize novel isoforms in a particular
dataset (large datasets of rare tissues or sequencing of RNA from populations which have been
under-represented in previous studies may very well discover novel isoforms), and then to use an EM or
similar method to quantify expression.

The details about how the GTEx (v7) and DGN data were quantified is missing, although these details are
critical for understanding how broad the conclusions of the analysis may be. Gene expression was
quantified in GTEx v7 using RNA-SeQC v1.1.8 which does not use an EM approach to resolve
multi-mapping reads. According to the Methods section of Battle, et al (2014), for the DGN dataset,
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HTSeq was used to quantify gene expression, which also does not use an EM approach. | would
recommend to add such quantification details of the datasets to this article.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Partly

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes
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expertise to confirm that it is of an acceptable scientific standard.
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Thank you for reviewing our paper. Please see our responses inline in bold and italic font
following your comments in standard font.

The authors present a detailed analysis of how false positives arise in trans-eQTL and
co-expression analyses, due to cross-mapping of reads among genes with sequence homology.
They present a cross-mappability metric, and provide pre-computed cross-mappability for two
human Gencode annotations (v19 and v26). They also provide software for efficiently computing
cross-mappability available at a GitHub link. The command line software has detailed instructions
online. The software requires genome FASTA files, a GTF file, a mappability bedgraph or bigwig
file, Bowtie (v1) and an index, and a few R packages (data.table, intervals, argparser, stats).

The report provides an important warning to the research community, and the pre-computed
cross-mappability and the software will be a valuable resource for groups studying trans-eQTL and

co-expression and making use of unique read counts for gene expression quantification.

One of the key points of the article is noting that the cross-mappable and likely spurious
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trans-eQTLs are highly replicable between datasets, because "it is driven by the underlying
sequence of the genome, and similar alignment errors frequently occur regardless of tissue and
study." This logic also extends to co-expression and gene networks built on gene-gene expression
correlations. Another key point was that filtering out of cross-mappable trans-eQTLs necessitates
re-assessment of FDR, as the highly significant cross-mappable trans-eQTLs bring down the
nominal FDR for other eQTLs.

>> Thank you for nicely summarizing the contribution of our work.
My main comment on the article is regarding details of the gene expression quantification.
The authors note that,

"The number of reads misaligned to Gene B across samples may be directly proportional to the
number of reads for Gene A, or may be determined by genetic variation creating sequence
mismatches with the correct region....We note that such errors are not entirely mitigated by filtering
multi-mapped reads—some alignment errors may remain between similar regions even among
uniquely aligned reads due to genetic variation, errors in the reference genome, and other
complications."

How would the analysis change if an expectation maximization (EM) approach were used for
quantifying transcript and gene expression, where a latent variable is used for the origin of each
read or pair of reads (both across isoforms and gene loci)? Such methods may resolve issues as
shown in Figure 1A, because the observed coverage and expression of only gene A may give a
higher likelihood than the observed coverage and expression of gene A and gene B. Howeverthe
degree to which these methods may offer an improvement with respect to the cross-mappability
issue depends on the distribution of genetic variation and errors in the reads, and on potential
errors in the reference genome/transcriptome and on incomplete gene annotations. Therefore, it
would be critical to perform the trans-eQTL analysis with regards to cross-mappability, when an
EM algorithm, or a similar method that resolves multi-mapping reads, is used to quantify gene
expression. Methods such as RSEM, Kallisto, or Salmon may be used to quantify gene and
transcript abundance, which use EM or variational Bayes EM to resolve multi-mapping reads (as
well as reads consistent with multiple isoforms of a gene) (disclosure: | am a co-author of the
Salmon method).

>> We appreciate the importance of this concern. We agree that EM-based quantification

in principle has the potential to help address the cross-mappability issue to some

extent. We performed additional analyses using RSEM-quantified gene expressions and

we still observed a high rate of potential false positives in our analyses, particularly for

trans-eQTLs. We updated the manuscript along with a supplementary figure

(Supplementary Figure 11).

® "We also note that utilization of improved alignment and quantification methods to

generate gene expression data may also be helpful to avoid false positives. For
example, quantification of gene expression levels using RSEM[28], an expectation
maximization based quantification tool, results in a smaller fraction of false positive
trans-eQTLs (60.17%) than that using RNA-SeQC (75.14%). However, potential false
positives due to cross-mappability still remain abundant in both trans-eQTL and
co-expression studies (Supplementary Figure 11)."
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We also added a brief description of the quantification pipelines of GTEx v7 and DGN in
the revised manuscript.

The authors note that:

"Alignment to the transcriptome or splice-aware alignment may offer future improvements, but
computational cost and inaccuracies due to incorrect annotation will have to be evaluated."

One potential solution which may alleviate both the issue of cross-mappability and incorrect
annotation, would be to use an isoform discovery method to detect and characterize novel
isoforms in a particular dataset (large datasets of rare tissues or sequencing of RNA from
populations which have been under-represented in previous studies may very well discover novel
isoforms), and then to use an EM or similar method to quantify expression.

>> This is an interesting idea. For the current analysis, we plan to leave the approach as
specified, but would like to explore this in the future. We note, however, that EM-based
approaches still do not address many cross-mappability errors in general, as shown in
response to the previous question.

The details about how the GTEx (v7) and DGN data were quantified is missing, although these
details are critical for understanding how broad the conclusions of the analysis may be. Gene
expression was quantified in GTEx v7 using RNA-SeQC v1.1.8 which does not use an EM
approach to resolve multi-mapping reads. According to the Methods section of Battle, et al (2014),
for the DGN dataset, HTSeq was used to quantify gene expression, which also does not use an
EM approach. | would recommend to add such quantification details of the datasets to this article.

>> We appreciate your concern. GTEx v7 used only uniquely mapped reads, but did not
use an EM approach in the original analysis, though we have added the RSEM version for
the revision as well. To make the manuscript self-contained, we briefly described the gene
expression quantification pipeline of both GTEx v7 and DGN in the manuscript.
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